C4d a4	
Student Number	
Number	

Mathematics Extension 1 HSC Trial Examination Term 3 2023

General Instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided
- For questions in Section II, show relevant mathematical reasoning and/or calculations

Total marks 70

Total marks SECTION 1 – 10 marks (pages 1-4)

- Attempt Questions 1-10
- Allow about 15 minutes for this section
- Answer each question on the multiple-choice answer sheet provided in the answer booklet.

SECTION II – 60 marks (pages 5-10)

- Attempt Questions 11-14
- Allow about 1 hours and 45 minutes for this section
- Answer each question in the appropriate space in the Answer Booklet. Extra writing pages are included at the end of each question.

SECTION I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1. Given the points A(-2,-5) and B(0,7), which of the following represents the displacement vector \overrightarrow{BA} ?

(A)
$$-2i - 12j$$

(B)
$$2i + 12j$$

(C)
$$-2i + 2j$$

(D)
$$2i + 2j$$

2. What is the anti-derivative of $\cos^2 2x$?

$$(A) \quad \frac{\cos^3 2x}{3} + C$$

$$(B) \quad \frac{1}{2}\sin^2 2x + C$$

(C)
$$\frac{x}{2} + \frac{\sin 4x}{8} + C$$

$$(D) \quad \frac{1}{2} + \frac{1}{2}\cos 4x + C$$

3. Which of the following expressions is the correct rate of change of the area of a circle (A) with respect to time (t)?

1

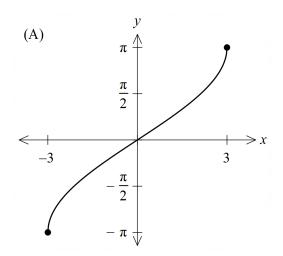
(A)
$$\frac{dr}{dt} = 2\pi r \times \frac{dA}{dt}$$

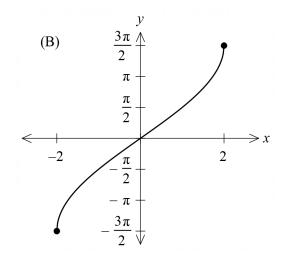
(B)
$$\frac{dr}{dt} = 2\pi r \times \frac{dA}{dr}$$

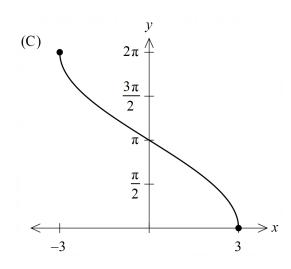
(C)
$$\frac{dA}{dr} = 2\pi r \times \frac{dt}{dr}$$

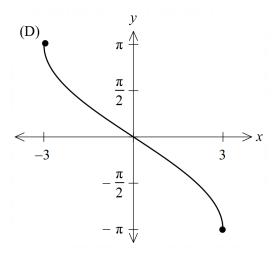
(D)
$$\frac{dA}{dt} = 2\pi r \times \frac{dr}{dt}$$

4. Which polynomial has a root at x = 1 of multiplicity 3?


(A)
$$x^3 - 3x + 2$$

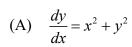

(B)
$$x^4 - 2x^3 + 2x - 1$$


(C)
$$x^3 + 4x^2 + 5x + 2$$


(D)
$$x^4 + 2x^3 - 2x - 1$$

5. Which graph best represents $y = 3\sin^{-1}\frac{x}{2}$?

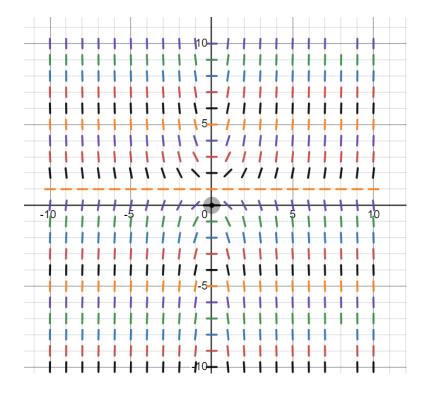
6. Which of the following is the derivative of $y = \tan^{-1} [2f(x)]$?


(A)
$$\frac{dy}{dx} = \frac{1}{1 + \left[f(x) \right]^2}$$

(B)
$$\frac{dy}{dx} = \frac{2}{1 + 4 \left\lceil f(x) \right\rceil^2}$$

(C)
$$\frac{dy}{dx} = \frac{f'(x)}{1+4[f(x)]^2}$$

(D)
$$\frac{dy}{dx} = \frac{2f'(x)}{1+4[f(x)]^2}$$


7. The direction field for a certain differential equation is shown below. Which of the following is the differential equation?

(B)
$$\frac{dy}{dx} = x^2 - y^2$$

(C)
$$\frac{dy}{dx} = xy - x$$

(D)
$$\frac{dy}{dx} = y^2 - x^2$$

- 8. What is the value of $\sin^{-1}(\cos \alpha)$ where $\frac{3\pi}{2} < \alpha < 2\pi$?
 - (A) $2\pi \alpha$
 - (B) $\alpha 2\pi$
 - (C) $\frac{3\pi}{2} + \alpha$
 - (D) $\alpha \frac{3\pi}{2}$
- **9.** The equation $y = e^{ax}$ satisfies the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0.$$

What are the possible values of *a*?

- (A) a = -2 or a = 3
- (B) a = -1 or a = 6
- (C) a = -3 or a = 2
- (D) a = -6 or a = 1
- **10.** Students at a school are required to study 4 subjects from a selection of 10. The ten subjects are placed in two lines, each containing 5 subjects.

How many possible combinations of subjects exist if a student must take at least 1 subject from each line?

- (A) 200
- (B) 250
- (C) 309
- (D) 356

SECTION II

60 marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section.

Answer these questions in the Answer Book provided.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (17 marks)

Marks

(a) The polynomial $P(x) = 2x^4 - 11x^3 + 19x^2 - 13x + 3$ has roots α , β , γ and δ .

Find the value of $\frac{1}{\alpha\beta\gamma} + \frac{1}{\alpha\beta\delta} + \frac{1}{\beta\gamma\delta} + \frac{1}{\alpha\gamma\delta}$

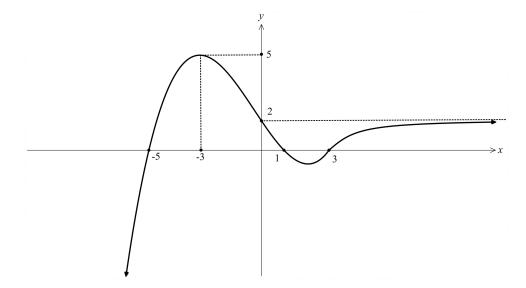
(b) Find
$$\int \frac{1}{4x^2 + 9} dx$$
.

(c) A square metal sheet is heated so that its side length is increasing at a uniform rate of 0.05 cms⁻¹. Find the rate its area is changing at the instant when the side length is 3.1 cm.

(d) Find
$$\int_0^{\frac{\pi}{6}} \sin 4x \cos 2x \, dx.$$
 3

(e) Given
$$\underline{a} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 and $\underline{b} = \begin{bmatrix} -6 \\ 4 \end{bmatrix}$, find:

(i)
$$|\underline{a}|$$


(ii)
$$a \cdot b$$

- (iii) the angle between a and b, to the nearest degree.
- (iv) $\operatorname{proj}_{b} \underline{a}$

Question 11 continues on page 6

Question 11 (continued)

(f) The diagram shows the graph of y = f(x) which has a horizontal asymptote at y = 2.

In your answer booklet draw clear sketches of the following. Show all relevant information.

$$(i) y = |f(x)| 1$$

(ii)
$$y = \frac{1}{f(x)}$$

End of Question 11

Question 12 (17 marks)

Marks

(a) Find $\int \frac{3x}{\sqrt{9-x^2}} dx$ using the substitution $u = 9-x^2$.

2

- (b) By expressing $\sqrt{3}\cos x \sin x$ in the form $A\cos(x+\alpha)$, where A > 0 and $0 \le \alpha \le \frac{\pi}{2}$, solve $\sqrt{3}\cos x \sin x + 1 = 0$, for $0 \le x \le 2\pi$.
- (c) Paddington Bear hits a golf ball with velocity V m/s at an angle of projection θ degrees to the horizontal.

The golf ball's position at any time t, is given by the position vector

$$r(t) = (Vt\cos\theta)i + (Vt\sin\theta - \frac{1}{2}gt^2)j$$
. [Do not prove this]

(i) Show that Paddington's golf ball reaches a maximum height of

2

$$\frac{V^2 \sin^2 \theta}{2g}$$
 metres.

(ii) What is the range of flight of the golf ball?

2

(d) Prove by mathematical induction that $4^n + 14$ is divisible by 6 for all positive integers $n \ge 1$.

3

- (e) The polynomial $P(x) = x^3 + bx^2 + cx + d$ has roots 0, 4 and -4.
 - (i) Find *b*, *c* and *d*.

2

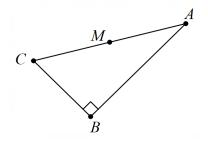
(ii) Without calculus, sketch the graph of y = P(x).

1

(iii) Hence, or otherwise, solve the inequality $\frac{x^2 - 16}{x} \le 0$.

2

Question 13 (14 marks)


Marks

(a) What is the value of the term independent of x in the expansion of

2

$$\left(2-\frac{3}{x^3}\right)\left(2x+\frac{5}{x^2}\right)^6$$
?

(b) ABC is a right-angled triangle. M is the midpoint of the hypotenuse AC, as shown below. Let $\overrightarrow{AM} = a$ and $\overrightarrow{BM} = b$.

NOT TO SCALE

(i) Express \overrightarrow{AB} and \overrightarrow{BC} in terms of \underline{a} and \underline{b} .

2

(ii) Prove that M is equidistant from the three vertices of $\triangle ABC$.

2

(c) A relation is defined by the parametric equations

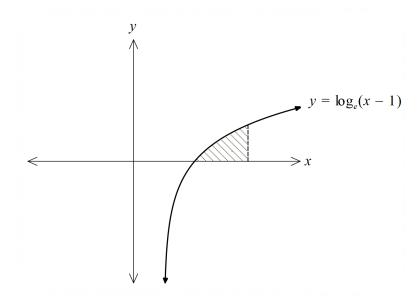
$$x = 1 - \sin t$$
, $y = \cos t \sin 2t$, for $0 \le t \le \pi$.

(i) Find the coordinates where the graph crosses the x and y axes.

2

(ii) State the domain of the relation.

1


(iii) Find the cartesian equation of the relation.

2

1

2

(d) Part of the graph of $y = \log_e(x-1)$ is given.

- (i) Find the value of y when x = e + 1.
- (ii) Find the shaded area, bounded by the curve, the *x*-axis and the line x = e + 1.

End of Question 13

Question 14 (12 marks)

Marks

2

(a) An area $A ext{ cm}^2$ is occupied by a bacteria colony. The colony has a growth rate modelled by the logistic equation

$$\frac{dA}{dt} = \frac{1}{25} A(50 - A)$$
 where $t \ge 0$ and is measured in days.

At time t = 0, the area occupied by the bacteria colony is $\frac{1}{2}$ cm².

(i) Show that
$$\frac{1}{A(50-A)} = \frac{1}{50} \left(\frac{1}{A} + \frac{1}{50-A} \right)$$
.

- (ii) Solve the logistic equation and hence show that $A = \frac{50}{1 + 99e^{-2t}}$.
- (iii) What is the limiting area of the bacteria colony?
- (b) A Maths club has 2n members, half of which are male and half female.

 A Pi Day committee is made up of 3 members of this club. By considering all different combinations for this committee, show that

$$n^n C_2 + {}^n C_3 = \frac{1}{2} {}^{2n} C_3$$
, where $n \ge 3$.

- (c) (i) Show that $\cos 4\theta = 8\cos^4 \theta 8\cos^2 \theta + 1$.
 - (ii) By using part (i) and letting $x = \cos \theta$ in the equation $16x^4 16x^2 + 2 \sqrt{2} = 0$ show that $\cos^2 \frac{\pi}{16} \cos^2 \frac{7\pi}{16} = \frac{2 - \sqrt{2}}{16}$.

END OF PAPER

NSW Education Standards Authority

2022 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

$$l = \frac{\theta}{360} \times 2\pi r$$

Area

$$A = \frac{\theta}{360} \times \pi r^2$$

$$A = \frac{h}{2}(a+b)$$

Surface area

$$A = 2\pi r^2 + 2\pi rh$$

$$A = 4\pi r^2$$

Volume

$$V = \frac{1}{3}Ah$$

$$V = \frac{4}{3}\pi r^3$$

Functions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$ax^3 + bx^2 + cx + d = 0$$
:

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

$$(x-h)^2 + (y-k)^2 = r^2$$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} (a+l)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, r \neq 1$$

$$S = \frac{a}{1-r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_a a^x = x = a^{\log_a x}$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

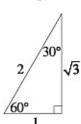
$$a^x = e^{x \ln a}$$

Trigonometric Functions

$$\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$$

$$A = \frac{1}{2}ab\sin C$$

$$a \quad b \quad c$$


$$\sqrt{2}$$
45°

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$l = r\theta$$

$$A = \frac{1}{2}r^2\theta$$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \cos A \neq 0$$

$$\csc A = \frac{1}{\sin A}, \sin A \neq 0$$

$$\cot A = \frac{\cos A}{\sin A}, \sin A \neq 0$$

$$\cos^2 x + \sin^2 x = 1$$

Compound angles

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$cos(A + B) = cos A cos B - sin A sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

If
$$t = \tan \frac{A}{2}$$
 then $\sin A = \frac{2t}{1+t^2}$

$$\cos A = \frac{1-t^2}{1+t^2}$$

$$\tan A = \frac{2t}{1-t^2}$$

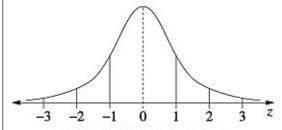
$$\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$$

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$$

$$\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right]$$

$$\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$$


$$\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$

An outlier is a score less than $Q_1 - 1.5 \times IQR$ or more than $Q_3 + 1.5 \times IQR$

Normal distribution

- approximately 68% of scores have z-scores between –1 and 1
- approximately 95% of scores have z-scores between –2 and 2
- approximately 99.7% of scores have z-scores between –3 and 3

$$E(X) = \mu$$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le r) = \int_{a}^{r} f(x) dx$$

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {}^{n}C_{r}p^{r}(1-p)^{n-r}$$

$$X \sim \text{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^{x}(1-p)^{n-x}, x = 0, 1, ..., n$$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

Differential Calculus

Function

Derivative

$$y = f(x)^n$$

$$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$$

$$y = uv$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$y = g(u)$$
 where $u = f(x)$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$y = \frac{u}{v}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$y = \sin f(x)$$

$$\frac{dy}{dx} = f'(x)\cos f(x)$$

$$y = \cos f(x)$$

$$\frac{dy}{dx} = -f'(x)\sin f(x)$$

$$y = \tan f(x)$$

$$\frac{dy}{dx} = f'(x)\sec^2 f(x)$$

$$y = e^{f(x)}$$

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

$$y = \ln f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$$

$$y = a^{f(x)}$$

$$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$$

$$y = \log_a f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$$

$$y = \cos^{-1} f(x)$$

$$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \int_a^b f(x) dx$$

$$y = \tan^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$$

Integral Calculus

$$\int f'(x)[f(x)]^n dx = \frac{1}{n+1}[f(x)]^{n+1} + c$$

where
$$n \neq -1$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\int f'(x)\sin f(x)dx = -\cos f(x) + c$$

$$\int f'(x)\cos f(x)dx = \sin f(x) + c$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$$

$$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$$

$$\frac{dy}{dx} = f'(x)\sec^2 f(x)$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\frac{dy}{dx} = f'(x)e^{f(x)} \qquad \qquad \int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$$

$$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$$

$$\frac{\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}}{\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}} \int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan^{-1} \frac{f(x)}{a} + c$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int_{a}^{b} f(x)dx$$

$$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$$

$$\int_a^b \frac{dy}{2n} dx = \frac{f'(x)}{1 + [f(x)]^2}$$

$$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$$

$$\frac{b - a}{2n} \left\{ f(a) + f(b) + 2 \left[f(x_1) + \dots + f(x_{n-1}) \right] \right\}$$
where $a = x_0$ and $b = x_n$

where
$$a = x_0$$
 and $b = x_0$

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$${\binom{n}{r}} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + {\binom{n}{1}}x^{n-1}a + \dots + {\binom{n}{r}}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{aligned} |\underline{u}| &= \left| x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \underline{u} \cdot \underline{y} &= \left| \underline{u} \right| \left| \underline{y} \right| \cos \theta = x_1 x_2 + y_1 y_2, \\ \text{where } \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \underline{y} &= x_2 \underline{i} + y_2 \underline{j} \\ \underline{r} &= \underline{a} + \lambda \underline{b} \end{aligned}$$

Complex Numbers

$$z = a + ib = r(\cos\theta + i\sin\theta)$$

$$= re^{i\theta}$$

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$$

$$= r^n e^{in\theta}$$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

$$x = a\cos(nt + \alpha) + c$$

$$x = a\sin(nt + \alpha) + c$$

$$\ddot{x} = -n^2(x - c)$$

Name:	2014(02)
Student Number:	
Faachar's Na	ma·

Mathematics Extension 1 HSC Trial Examination Term 3 2023

ANSWER BOOKLET

- Put your name, Student Number and Teacher's name on this Booklet.
- For Questions 1-10 use the Multiple-Choice Answer Sheet provided.
- Answer Questions 11-14 in the spaces allocated for each question as these spaces provide guidance for the expected length of your response.
- Write using a non-erasable black or blue pen. Black is preferred.
- Extra writing space is provided at the end of each question.
- Calculators approved by NESA may be used.

BLANK PAGE

Mathematics Extension 1 HSC Trial Examination

Name:	
Student Number:	
Teacher's Name:	

Section I – Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

2 + 4 =

(A) 2

(B) 6

(C) 8

(D) 9

 $A \bigcirc$

В

 $C \bigcirc$

D 🔾

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A \blacksquare

B

 $C \cap$

D O

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word *correct* and drawing an arrow as follows.

1	A	В	СО	D 🔾
2	A O	В	C •	D 🔿
3	A 🔿	В	C O	D
4	A 🔿	В	СО	D 🔿
5	A 🔿	В	С	D 🔿
6	A O	В	c O	D
7	A 🔿	В	С	D 🔿
8	A 🔿	В	СО	D
9	A 🔿	В	C	D 🔿
10	A	В	c o	D 🔿

BLANK PAGE

.

.

400

\$50

3

SECTION II 60 marks

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Extra writing space is provided at the end of each question.

Question 11 (17 marks)	Marks
(a) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
= 3+8+2+B = 2B85 ×+B+8+5= 11/2 ×B85= 3/2	
- 3 2 co	rect
$\int \frac{1}{4x^2+9} dx$	2
$= \frac{1}{4} \int \frac{1}{x^{2} + 9/4} dx$ $= \frac{1}{4} \times \frac{1}{3/2} + an \frac{1}{3/2} + C$ $= \frac{1}{4} \times \frac{1}{3/2} + an \frac{1}{3/2} + C$	stant correct 2x correct
$=\frac{1}{6} + an^{2} = \frac{2x}{3} + C$	

Question 11 continues on page 2

2

(c) Let tre side length be z

 $A = \chi^2$ $2\int_{-\infty}^{\infty} dx dx$

 $\frac{dx}{dt} = 0.05 \, \text{cm/s} \qquad A = x^2 \qquad 2 \, | \text{correct}$ $\frac{dA}{dx} = 2x \qquad \text{Expression fo}$ $\frac{dA}{dx} = 2x \qquad \text{Ara, derivative}$

dA = dA × dx art and related vate correct

 $= 2 \times 3.1 \times 6.05$ = 0.31 cm²/S

...../...../

(d) $\int_{0}^{\pi} \sin 4x \cos 2x \, dx$

= 1/2 (sin (4x + 2x) + sin (4x - 2x)) dx

 $= \frac{1}{2} \int_{0}^{\pi} \left(\sin 6x + \sin 2x \right) dx$ $= \frac{1}{2} \int_{0}^{\pi} -\cos 6x - \cos 2x \int_{0}^{\pi}$

 $=\frac{1}{2}\left\{-\frac{\cos \pi}{6}-\frac{\cos \frac{\pi}{3}}{2}-\left(-\frac{\cos 0}{6}-\frac{\cos 0}{2}\right)\right\}$

 $=\frac{1}{2}\left\{\frac{1}{6}-\frac{1}{4}+\frac{1}{6}+\frac{1}{2}\right\}$

Question 11 continues on page 3

2 Correct
use of products
to sums
and integration
evior in calc

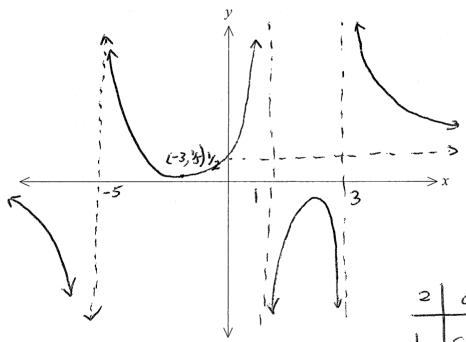
1 Collect sums
to products.

Collect

Question 11 continues on page 4

1

2


(f)

(i)

2

(ii)

End of Question 11

Correct

Correct

asymptotes

and some

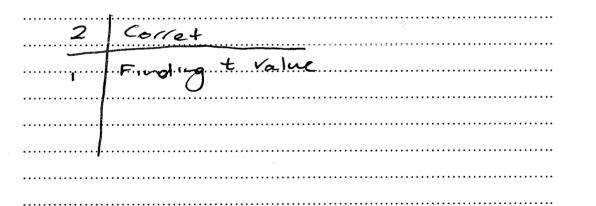
pieces correct

If you use this space, clearly indicate which question you are answering.

BLANK PAGE

Question 12 continues on page 8

2


(c)				
(i)	,			
('(+) = (V	cos 0) l	+ (Vsin O	-gt) [
			0 - 0	
Maximum	height	oceus	nnen	y = 0

when
$$t = \frac{\sqrt{sin0}}{g} = \frac{\sqrt{sin0} \times \sqrt{sin0} - \frac{1}{2}g(\frac{\sqrt{sin0}}{g})^2}{2}$$

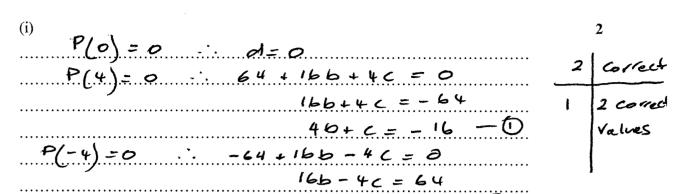
$$\frac{-\sqrt{300} - 8 \times \sqrt{300}}{9^2}$$

$$\frac{-2\sqrt{300} - \sqrt{300}}{29}$$

 2	
= V SAN G	Asregid
 29	

Question 12 continues on page 9

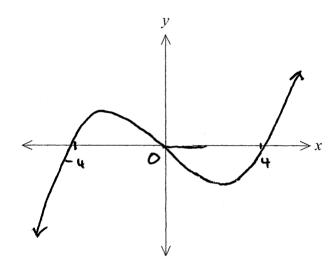
2


(c)

(ii) When $y = 0$ $\sqrt{t} \sin 0 - \frac{1}{2}gt^2 = 0$
7 - 7
t(V
: +=0 0/ 0 + = Vsin0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
J
2 V 9 11 9 1 2 V 9 10 P
when $t = \frac{2V\sin\theta}{g}$ $z = V\cos\theta + \frac{2V\sin\theta}{g}$
>c = Y Sm 20
i. The range is $\frac{V^2}{9}$ 910 20
g
2 Collect
Final

Question 12 continues on page 10

(d)	n	3
	Let the statement be 4 +14 is divisible	
	by 6 for all n > 1	
	<u> </u>	
	wren n=1	
	4'+14 = 18 which is divinible by 6	
	Assume the statement is true for n=K	
	1:e 4 "+ 14 = 6M MEZ K71	
	RTP lue statement 15 true for n=12+1	
	re 4k+1,14 is divisible by 6	
	Nois 4 K+14	
	$Now 4 + 14$ $= 4 \times 4^{12} + 14$	
	Fram assumption, 4 = 6M-14	
	Sub \$1.+u+178 := 4 x (6M-14)+14	
,	= 24M - 56 + 14	
	= 24M - 4 Z	
	= 6 (4M - 7)	
	Since MEZ, 4M-7EZL: 4 +14	
	is divisible by b	
	Hence, since the statement is time	
	for n= 1 k and n= 16+1, the statement	4
	15 true for n=1+1=2 and so on	
	by the principle of matteratical	
	induction:	
	3 correct 2 set up, conclus and some pro	
	2 Sct up, conclu	arcss
	and some pro	2
	1 Set up and c	CONCIUSIO
	Question 12 continues on page 11	


(e)

4b-c=16-0

(1) + (2) 8b = 6 From (6) : b = 0 C = -16 : $P(x) = x^3 - 16x$

(ii)

P(x)=x(x2-16) =x(x-4)(x+4)

11/0

 $\frac{x^2 - 1b}{x} \leq 0$

2

This is the same as finding where $\frac{P(x)}{x^2}$ to since $x^2 > 0$, the solution

to the inequality is ze-4 er

2 correct
1 Some Progress

BLANK PAGE

If you use this space, clearly indicate which question you are answering.

BLANK PAGE

Question 13 (14 marks) $\left(\frac{2x + \frac{5}{x^2}}{x^2} \right)^6 = \underbrace{\xi}_{r=0}^6 \left(\frac{6}{2x} \right)^r \left(\frac{5x^2}{x^2} \right)^{6-r} = \underbrace{\xi}_{r=0}^4 \left(\frac{6}{2} \cdot \frac{7^2}{5^6} \right)^{6-r}$ 2 correct X^3 term \Rightarrow $C_5 2^5 . 5' X^3$ 1 Working Constant term \Rightarrow $C_4 2^4 . 5' X'$ towards \Rightarrow Term independent of X in $(2 - \frac{3}{X^3})(2X + \frac{5}{X^2})^6$ either $X^3 = -3 \times 6 \times 25 \times 5 + 2 \times 15 \times 2^4 \times 5^2$ Of contact = -2880 + 12000(b) (ii) 5 ma ABC is right - angled

[AC] = |AB| + |BC| 2 2 $|4|a|^{2} = |a+b|^{2} + |a-b|^{2}$ correct $4|a|^2 = |a|^2 + 2|a||b| + |b|^2 + |a|^2 - 2|a||b| + |b|^2$ Correct $2|a|^2 = |a|^2 + 2|a||b| + |b|^2 + |a|^2 - 2|a||b| + |b|^2$ of Pythagoras' $2|a|^2 = 2|b|^2$ in Vector form $|a|^2 = |b|^2$ Since |a| > 0 and |b| > 0 |a| = |b| and since M is the midpoint of AM = MC = a· A,B, C are equidistant from M

(c) 2 $x = 1 - 910t \quad y = cost 9102t$ when x=0 when y=0 cost=0 or an 2t=0 $t = \frac{\pi}{2}$ $t = \frac{\pi}{2}$ $= 0, \pi, 2\pi$ $t = 0, \pi/2, \pi$ t= 11/2 x=0 y=0 are 1 and 0. t = T x = 1, y = 0 y = 1(ii) (iii) $y = cost \times 2 cont cost$ Collect $= 2 cost \times 2 cont cost$ Progress $= 2 cost \times 2 cont cost$ Fragress $= 2 cost \times 2 cont cost$ $= 2 cost \times 2 cont cost$ Fragress $= 2 cost \times 2 cont$ Fra 2

Question 13 continues on page 17

y = 2x(1-x)(2-x). $0 \le x \le 1$

OR y = 2x3-6x2+4x , 05x51.

 $=2(1-x)(2x-x^2)$

(d)

(i)	,		
	y= In (e+1-1)	1/10	
	= 1		
		•••••	
• • • • • • • •		•••••	

(ii)
$$\int |x - 1| dx = 1$$

$$= |x - 1| = |x|$$

$$= (e+1) \times 1 - \int (e^{x} + 1) dy$$

$$= (e+1) - [e^{x} + y]$$

$$= (e+1) - [e^{x} + y]$$

$$= e+1 - \left[2 + \ln(2-1) \right]_{2}^{e+1}$$

$$= e+1 - \left[e+1+1 - (2+0) \right]$$

$$= 1 \text{ und}$$

BLANK PAGE

If you use this space, clearly indicate which question you are answering.				
······································				
······································				

BLANK PAGE

1

(a)

(i) RHS	50 A 50(50-A)	1/10
••••••	30 A 50(50-A)	
	- 50-A + A	
***************************************	50A(50-A)	
	50A(50-A)	•••••••••••••••••••••••••••••••••••••••
	= A (56=A)	••••••
	= LHS	

Question 14 continues on page 22

Part (a) continued

(ii)
$$\frac{AA}{A+} = \frac{A}{25} (50 - A)$$

$$\int \frac{\partial A}{A(50-A)} = \int \frac{1}{25} dA$$

$$\frac{25}{50} \left(\frac{1}{A} + \frac{1}{50-A} \right) dA = + + C$$

$$C = \frac{1}{2} \ln \frac{1}{99}$$
 3 correct soln

*
$$\frac{1}{2} \ln \left| \frac{A}{50 - A} \right| = t + \frac{1}{2} \ln \frac{1}{99}$$

$$2t = \left(\ln \left| \frac{A}{50-A} \right| - \ln \frac{1}{99} \right)$$

$$2t = \ln \left| \frac{99A}{50-A} \right|$$

$$e^{2t}(50-A) = 99A$$

$$A(99+e^{2t}) = 50e^{2t}$$

$$A = 30e - \frac{1}{2}$$


$$99 + e^{2t}$$

.....

Question 14 continues on page 24

If you use this space, clearly indicate which question you are answering.

4c) i) quicker solution
$\cos 4\theta = 2\cos^2 2\theta - 1$
$-2 [2(05^{2} - 1)^{2}]$
$= 2(4\cos^{+}\theta - 4\cos^{2}\theta - 1) - 1$
$= 8 \cos^4 \theta - 8 \cos^2 \theta - 2 + 1$
= 8 cos 48 - 8 cos 20 - 1 = RHS as required
· · · · · · · · · · · · · · · · · · ·
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
······································
•••••••••••••••••••••••••••••••••••••••
······································
•••••••••••••••••••••••••••••••••••••••
· · · · · · · · · · · · · · · · · · ·